Traveler
Helpful and Constructive!
|
I've tried another idea, with results that may be interesting. Using Lkeas substitution of "fork" by 0, "spoon" by 1 and "spork" by x and using the x as separation between units, I've noticed that there are just 7 different sets of symbols (8 if you count the initial standalone 0), which I've numbered: 0 = 0 0 0 0 0 = 1 0 1 0 = 2 0 0 0 0 0 = 3 1 0 = 4 1 0 0 = 5 0 0 0 0 0 1 0 = 6 0 1 0 0 = 7 Doing the replacement, the result is: 0 1 2 3 4 3 4 3 4 3 5 6 1 2 3 4 1 2 3 4 1 2 1 2 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 1 2 1 2 3 4 1 2 1 2 1 2 3 4 1 2 1 2 3 4 1 7 6 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 3 4 3 4 3 4 3 4 1 2 3 4 3 4 3 4 1 2 1 2 3 4 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 3 4 1 2 1 2 1 2 3 4 3 4 3 4 3 4 1 2 1 2 1 2 3 4 1 2 1 2 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 5 6 3 4 1 2 3 4 1 2 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 1 2 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 3 4 1 2 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 1 2 1 2 1 2 3 4 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 1 2 3 4 1 2 1 2 1 2 3 4 1 2 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 3 4 1 2 1 2 3 4 1 2 3 4 3 4 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 3 4 3 4 3 4 1 7 6 3 4 3 4 1 2 1 2 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 1 2 1 2 3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 1 2 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 3 4 3 4 1 2 3 4 1 7 6 1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 7 6 1 2 1 2 3 4 3 4 1 2 1 2 3 4 1 2 1 2 1 2 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 3 4 1 2 3 4 1 2 1 2 1 2 3 4 3 4 3 4 1 2 3 4 3 4 1 2 3 4 1 2 1 2 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 1 2 1 2 1 2 1 2 1 2 3 4 3 4 3 5 6 3 4 1 2 3 4 1 2 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 3 4 1 2 3 4 1 2 3 4 3 4 3 5 6 3 4 3 4 1 2 1 2 3 4 1 2 3 4 3 4 1 2 3 4 3 4 3 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 3 4 3 4 1 2 1 7 6 3 4 1 2 3 4 1 2 1 2 1 2 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 3 4 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 3 4 1 2 3 4 1 2 1 2 3 4 3 4 3 4 1 2 1 2 3 4 1 2 1 2 3 4 3 4 1 2 3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 3 4 1 2 3 4 1 2 1 2 1 7 6 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 5 6 3 4 3 4 1 2 1 2 3 4 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 1 2 1 2 3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 3 4 1 2 3 4 3 4 3 4 1 2 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 3 4 1 2 3 4 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 3 4 3 4 3 4 3 4 3 4 1 7 6 3 4 1 2 3 4 3 4 1 2 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 3 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 1 2 3 4 3 4 1 2 3 4 3 4 3 5 6 3 4 3 4 1 2 1 2 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2 3 4 1 2 3 4 3 4 1 2 1 2 3 4 3 4 1 2 3 4 3 4 1 2 1 2 3 4 3 4 3 4 1 2 3 4 1 2 1 2 1 2 3 4 3 4 1 2 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 2 3 4 3 4 3 4 3 4 1 2 3 4 3 4 3 4 1 2 3 5 6 3 4 1 2 1 2 3 4 1 2 3 4 1 2 1 2 1 2 1 2 3 4 3 4 3 4 1 2 3 5 6 1 2 3 4 3 4 3 4 1 2 3 4 3 4 1 2 1 2 1 2 3 4 3 4 3 4 3 4 1 2 3 4 1 2 1 2 3 4 1 2 1 2 3 4 3 4 3 4 3 4 1 2 3 4 1 2 3 4 3 Since there are 7 signs, I wonder if they may represent the vowels and semi-vowels (a, e, i, o, u, w, y) and we have to fill in the consonants in-between them. Maybe we could obtain the consonants with some other of the substitution methods we've got...
|